Your browser doesn't support impress.js. Try Firefox or Safari.


Research Associate (CR2 CNRS)


Laboratoire Evolution et Diversité Biologique - Université Paul Sabatier, Toulouse, France

I am a biologist with a primary interest in ecology and evolution. My research spans a diversity of biological systems and approaches, conceptually unified by a biogeographic perspective. I investigate the ecological and evolutionary forces responsible for the current patterns of global biodiversity.

Current funded projects are:
PHYLOGUIANAS (2013-2015), DIADEMA (2013-2015), NEBEDIV (2013-2017) and BIOHOPSYS (2013-2015)

map of localities

38 - Zedane L., Hong-Wa C., Murienne J., Jeziorski C., Baldwin B.G., Besnard G. (2015) Museomics illuminate the history of an extinct, paleoendemic plant lineage (Hesperelaea, Oleaceae) known from an 1875 collection on Guadalupe Island, Mexico. Biological Journal of the Linnean Society.

37 - Kocher A., Guilbert E., Lhuillier E. Murienne J. (2015)
Sequencing of the mitochondrial genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach. Compte rendus Biologie. doi: 10.1016/j.crvi.2014.12.004 image1

36 - Murienne J. , Morlon H. (2015)
Chapter 2: Un concentre de biodiversite. In Ecologie Tropicale: de l'ombre à la lumière. CNRS/ Le Cherche Midi. Forget P.-M. coord.

35 - Cally S., Solbès P., Grosso B., Murienne J. (2014)
An occurence records database of French Guiana harvestmen. Biodiversity Data Journal 2: e4244 doi:10.3897/BDJ.2.e4244 image1

34 - Cally S., Lhuillier E., Iribar A. Garzon-Orduna I., Coissac E., Murienne J. (2014)
Shotgun assembly of the complete mitochondrial genome of the neotropical cracker butterfly Hamadryas epinome. Mitochondrial DNA doi:10.3109/19401736.2014.971262 image1

33 - Kocher A., Kamilari M., Lhuillier E., Coissac E., Péneau J., Chave J., Murienne J. (2014)
Shotgun assembly of the assassin bug Brontostoma colossus mitochondrial genome (Heteroptera, Reduviidae). Gene 552, 184-194; doi:10.1016/j.gene.2014.09.033. image1

32 - Comte L., Murienne J. , Grenouillet G. (2014)
Species traits and phylogenetic conservation of climate-induced range shifts in stream fishes. Nature Communications 5: 5023, doi:10.1038/ncomm6053.image1

31 - Murienne J. (2014)
Chapitre II: Génèse et évaluation de la biodiversité. In Prospectives CNRS-INEE en écologie tropicale. Forget P.-M. coord. p17-28. image1

30 - Picart L., Forget P.-M., D'Haese C., Daugeron C., Beni S., Bounzel R., Kergresse E., Legendre F., Murienne J. , Guilbert E. (2014)
Improved rope-climbing technique for access and movement in the canopy. Ecotropica.

29 - Murienne J. , Daniels, S. R., Buckley, T. R., Mayer, G., Giribet, G. (2014)
A living fossil tale of Pangaean bogeography. Proceedings of the Royal Society B 281: 20132648, doi:10.1098/rspb.2013.2648. image1

28 - Bonato, L., Drago, L., Murienne J. (2014)
Phylogeny of Geophilomorpha (Chilopoda) inferred from new morphological and molecular evidence. Cladistics 30 (5) 485-507, doi: 10.1111/cla.12060 image1

27 - Vedel V., Rheims C., Murienne J. , Brescovit A. D. (2013)
Biodiversity baseline of the French Guiana spider fauna. SpringerPlus 2:361, doi:10.1186/2193-1801-2-361 image1

26 - Murienne J. , Benavides L. R., Prendini L., Hormiga G., Giribet G. (2013)
Forest refugia in Western and Central Africa as "museums" of Mesozoic biodiversity. Biology Letters, 9 (1) 20120932, doi: 10.1098/rsbl.2012.0932. image1

25 - Brosseau O., Murienne J., Pichon, D., Vidal, N., Eleaume, M. Ameziane, N. (2012)
Phylogeny of Cidaroida (Echinodermata: Echinoidea) based on mitochondrial and nuclear markers. Organisms, Diversity and Evolution, 12 (2) 155-165, doi:10.1007/s13127-012-0087-1. image1

24 - Giribet G., Sharma P., Benavides L. G., Boyer S. L., Clouse R. M., De Bivort B. L., Dimitrov D., Kawauchi G. Y., Murienne J., Schwendinger, P. J. (2012)
Evolutionary and biogeographic history of an ancient and global group of arachnids (Arachnida, Opiliones, Cyphophthalmi) with a new taxonomic arrangement. Biological Journal of the Linnean Society 105 (1), 92-130, doi:10.1111/j.1095-8312.2011.01774.x.image1

23 - Espeland M., Murienne J. (2011)
Diversity dynamics in New Caledonia: towards the end of the Museum model? BMC Evolutionary Biology 11: 254, doi:10.1186/1471-2148-11-254. image1

22 - Murienne J., Edgecombe, G. D., and Giribet G. Organisms, Diversity and Evolution 11, 61-74 (2011).
Comparative phylogeography of the centipedes Cryptops pictus and Cryptops niuensis in New Caledonia, Fiji and Vanuatu. image1

21 - Murienne J., Edgecombe, G. D., and Giribet G. Molecular Phylogenetics and Evolution 57, 301-313 (2010).
Including secondary structure, fossils and molecular dating in the centipede tree of life. image1

20 - Murienne J. Journal of Biogeography 37, 1625-1626 (2010).
Panbiogeography of New Caledonia: a response to Heads (2008). image1

19 - Murienne J., Karaman, I. and Giribet, G. Journal of Biogeography 37, 90-102 (2010).
Explosive evolution of an ancient group of Cyphophthalmi (Arachnida: Opiliones) in the Balkan Peninsula. image1

18 - Murienne J., Giribet, G. Zoological Journal of the Linnean Society 156, 785-800 (2009).
The Iberian Peninsula: ancient history in a hotspot of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi: Sironidae) diversity. image1

17 - Murienne J. Journal of Biogeography 36 (8), 1433-1434 (2009).
Testing biodiversity hypotheses in New Caledonia using phylogenetics. image1

16 - Murienne J., Gilbert, E., Grandcolas, P. Biological Journal of the Linnean Society 97, 177-184 (2009).
Species diversity in the New Caledonian endemic genera Cephalidiosus and Nobarbus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species distribution modeling. image1

15 - Murienne J. Organisms Diversity and Evolution 9, 44-51 (2009).
Molecular data confirm family status for the Tryonicus-Lauraesilpha group (Insecta, Blattodea, Tryonicidae). image1

14 - Murienne J. In Encyclopedia of Islands, Gillespie, R. and Clague, D., Eds. University of Califonia Press 643-645 (2009).
New Caledonia, Biology. image1

13 - Murienne J., Ziegler, A., Ruthensteiner, B. Nature 453(7194) 450 (2008).
A 3D revolution in communicating science. image1

12 - Murienne J., Pellens, R, Grandcolas, P. In: Zoologia Neocaledonica 6, Systematics and Biodiversity in New Caledonia. Grandcolas, P.. (Ed.). Paris: Mémoires du Muséum National d'Histoire Naturelle 197, 261-271 (2008).
Short-range endemism in New Caledonia. New Species and distribution in the genus Lauraesilpha. image1

11 - Murienne J., Pellens, R., Budinoff, R. B., Wheeler, W. C., Grandcolas, P. Cladistics 24, 802-812 (2008).
Phylogenetic analysis of the endemic New Caledonian cockroach Lauraesilpha. Testing competing hypothesis of diversification. image1

10 - Murienne J.,Harvey, M.S., Giribet, G. Mol. Phyl. Evol. 49, 170-184 (2008).
First molecular phylogeny of the major clade of Pseudoscorpiones. image1

9 - Grandcolas, P., Murienne J., Desutter, L., Guilbert, E., Jourdan, E., Robillard, T., Deharveng, L. Phil. Trans. R. Soc. Lond. 363, 3309-3317 (2008).
New Caledonia: a very old Darwinian island?. image1

8 - Desutter-Grandcolas, L., Legendre, F. Grandcolas, P., Robillard, T., Murienne J. Cladistics 23, 90-94 (2007).
Distinguishing between convergence and parallelism is central to comparative biology: a reply to Williams and Ebach. image1

7 - Manuel, M., Jager, M., Murienne J., Clabaut, C., Le Guyader, H. Developmental Genes and Evolution (2006).
Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. image1

6 - Jager, M., Murienne J., Clabaut, C., Deutsch, J., Le Guyader, H., Manuel, M. Nature 441, 506-508 (2006).
Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider. image1


The historical causes and regional determinants of the outstanding Amazonian diversity remain speculative, and the ability of tropical biomes to withstand major environmental changes, poorly known. Predicting how biodiversity will respond to these environmental changes is a major challenge facing ecologists, and a macroevolutionary perspective help understand how environmental changes have affected biodiversity in the past.


Within the PHYLOGUIANAS project (ANR-10-LABX-25-CEBA; 2013-2015), we propose to build on phylogenomics techniques and regional paleoclimatic modeling to bridge a gap in the knowledge of the macroevolutionary patterns for selected lineages in the Guiana Shield. This project will primarily focus on the Guiana Shield, a Precambrian craton within the South American plate which has remained emerged and located around the tropics for the past 200 Myr. We will assemble and compile data for three groups of organisms: invertebrates, frogs, and flowering plants. Fully resolved phylogenetic trees will be constructed using state of the art techniques in phylogenomics. The past 100 Ma of climatic changes in South America will be modelled using regional models and reconstructed topography.


How local communities are structured from regional species pools persists as a fundamental question in ecology, which is all the more compelling in hyper-diverse systems of tropical regions. Nevertheless, studies of community assembly in the tropics have generally been limited to trees, with less than 10% of published papers on tropical community assembly focusing on other species groups. A comparative analysis of assembly rules among different species groups in the tropics represents an original and unprecedented objective that would shed light on the evolution and maintenance of diversity in these hyper-diverse systems. Yet to date, such a study has simply not been possible due to a lack of data and coordination in particular sites.

Within the DIADEMA project (ANR-10-LABX-25-CEBA; 2013-2015), we propose to study the contrasting processes governing community assembly in eight species groups across the tropical region of French Guiana. We will test the hypothesis that the contribution of different processes to local community assembly differs among species groups with different life history strategies. Within the NEBEDIV / TREBEDIV project (ANR / AIRD; 2013-2017), we will test hypotheses related to the coordinated assembly of multiple species groups. In particular, host specificity and dispersal limitation of natural enemies can result in specific predictions about the structure of natural enemy communities and the coupling of plant and natural enemy community structure.

Flag 1 Description Flag 2 Description Flag 3 Description Flag 4 Description Flag 4 Description Flag 4 Description Flag 4 Description


Global changes such as climate and land-use changes affect host-pathogen interactions, through the modification of the epidemiological pathways leading to new and emergence of infectious diseases. As a consequence of these changes, the emergence (or re-emergence) of infectious diseases constitute a serious threat to health. Most of emerging and re-emerging infectious diseases are zoonotic/vector-borne diseases and changes affecting biodiversity and ecosystems may unexpectedly increase the risk of zoonotic/vector disease transmission.


Within the BIOHOPSYS project (ANR-10-LABX-25-CEBA; 2013-2015), we seek (1) to analyze five infectious diseases and their hosts in relation to biodiversity modification and environmental change, (2) to model their transmission dynamics according to habitat and ecosystem alteration, climate change and biodiversity loss, and (3) to propose scenarios of disease transmission accordingly. Analyses of local situations and their evolution will help to inform policy- makers and public health authorities on conditions at higher risks for increasing disease transmission and spread in humans.